Map credit Forbes
China’s 13th Five-Year Plan (2016-2020) is still in the early planning stage, but @JimConca has just posted an outline of the ambitious nuclear plans at Forbes. Jim sees 350 GW and “over a trillion dollars in nuclear investment” by 2050. Near term to 2030 China plans to build seven reactors per year achieving 150 GW total generation by 2030. Jim concludes that China seems to be commissioning new nuclear plants for roughly 1/3 of US costs.
It seems as though 5 years and about $2 billion per reactor has become routine for China. If that can be maintained, then China will be well-positioned as the world’s nuclear energy leader about the time their middle class swells to over one billion.
That’s the PWR deployment story. Globally some of the most serious advanced reactor development is being undertaken by the Chinese Academy of Sciences (CAS) in collaboration with the US national labs — working on the solid-fueled salt-cooled FHR (PB-AHTR) plus ORNL for their experience with the MSR. Here’s a summary on the collaboration from my post Nuclear City: it’s happening in Shanghai and Berkeley. The Chinese program is seriously ambitious as you can see from their aggressive schedule and USD $400 million funding:
From Mark’s reports I learned that one of the presentations was by a key figure, Xu Hongjie of the Chinese Academy of Sciences (CAS) in Shanghai. Hongjie is the director of what China dubs the “Thorium Molten Salt Reactor” (TMSR) project. One of his slides is shown above, presenting an overview of the TMSR priorities (left side) and the timelines. Happily the Chinese are also focused on the process heat applications of the PH-AHTR (hydrogen to methanol etc.) and the huge benefits to a water impoverished region like China. The Chinese are demonstrating systems-thinking at scale.
There are two Chinese MSR programs:
- TMSR-SF or solid fuel, which looks to me to be very similar to Per Peterson’s PB-AHTR program at UC Berkeley
- TMSR-LF or liquid fuel, which I gather is similar to popular LFTR concept.
Both designs are derivative of the Weinberg-driven Oak Ridge (ORNL) molten salt reactor program (that was cancelled by politicians in the 1960s). I understand the PB-AHTR to be most ready for early deployment, which will lay critical foundations for the liquid fuel TMSR-LF (LFTR) implementation a decade or so later. UC Berkeley’s Catalyst magazine has a very accessible summary of the PB-AHTR program.
Mark Halper reported from the Geneva Thorium Energy Conference. The
I proposed a few days ago a China – OECD cooperation to fast-track deployment of nuclear instead of coal. Fortunately, the Chinese and several of the US labs and universities seem to have figured this out without my help:-) This is probably all detailed somewhere online, but I’ve not been able to find it so far. These are the parties to the China – US cooperation:
- Chinese Academy of Sciences (CAS) in Shanghai
- Oak Ridge National Laboratory (ORNL)
- University of California Berkeley
- University of Washington
The United States could be leading the global nuclear deployment. But so long as the Big Greens are running the show that won’t happen. The good news is that once the love affair with solar/wind/gas collides with reality, then the US can get in line for low-cost, advanced Chinese nuclear technology.